Travel Mode Detection with Varying Smartphone Data Collection Frequencies

نویسندگان

  • Muhammad Awais Shafique
  • Eiji Hato
چکیده

Smartphones are becoming increasingly popular day-by-day. Modern smartphones are more than just calling devices. They incorporate a number of high-end sensors that provide many new dimensions to smartphone experience. The use of smartphones, however, can be extended from the usual telecommunication field to applications in other specialized fields including transportation. Sensors embedded in the smartphones like GPS, accelerometer and gyroscope can collect data passively, which in turn can be processed to infer the travel mode of the smartphone user. This will solve most of the shortcomings associated with conventional travel survey methods including biased response, no response, erroneous time recording, etc. The current study uses the sensors' data collected by smartphones to extract nine features for classification. Variables including data frequency, moving window size and proportion of data to be used for training, are dealt with to achieve better results. Random forest is used to classify the smartphone data among six modes. An overall accuracy of 99.96% is achieved, with no mode less than 99.8% for data collected at 10 Hz frequency. The accuracy is observed to decrease with decrease in data frequency, but at the same time the computation time also decreases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-mode Trip Information Recognition Based on Wavelet Transform

1 GPS-based travel survey is an emerging data collection method in transportation planning. 2 Its application in trip mode detection has been explored in many existing studies. 3 However, most existing research on GPS data based trip mode detection methods are 4 developed and tested with data collected from European and American countries. Their 5 methods cannot be easily adapted to Asian count...

متن کامل

Travel Mode Detection Based on GPS Raw Data Collected by Smartphones: A Systematic Review of the Existing Methodologies

Over the past couple of decades, Global positioning system (GPS) technology has been utilized to collect large-scale data from travel surveys. As the precise spatiotemporal characteristics of travel could be provided by GPS devices, the issues of traditional travel survey, such as misreporting and non-response, could be addressed. Considering the defects of dedicated GPS devices (e.g., need muc...

متن کامل

Travel Mode Detection Based on Neural Networks and Particle Swarm Optimization

The collection of massive Global Positioning System (GPS) data from travel surveys has increased exponentially worldwide since the 1990s. A number of methods, which range from rule-based to advanced classification approaches, have been applied to detect travel modes from GPS positioning data collected in travel surveys based on GPS-enabled smartphones or dedicated GPS devices. Among these appro...

متن کامل

Harnessing smartphone sensors for tracking location to support travel data collection

There has been growing interest in using smartphones for the collection of travel data. These devices are being used by an increasing proportion of the population overcoming one of the barriers to GPS travel surveys. Nonetheless, several barriers remain before smartphones can effectively replace dedicated GPS devices. This paper describes the development of a smartphone app that balances the ne...

متن کامل

Using Probe Person Data for Travel Mode Detection

Recently GPS data is used in a lot of studies to automatically reconstruct travel patterns for trip survey. The aim is to minimize the use of questionnaire surveys and travel diaries so as to reduce their negative effects. In this paper data acquired from GPS and accelerometer embedded in smart phones is utilized to predict the mode of transportation used by the phone carrier. For prediction, S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2016